Adversarial attacks
Версия от 15:00, 29 сентября 2020; Gamajun (обсуждение | вклад) (Новая страница: «== Атаки на обход методов глубинного обучения == На этой странице собраны материалы для пр…»)
Атаки на обход методов глубинного обучения
На этой странице собраны материалы для предварительного чтения по теме, дальше страницу будем дополнять более полезными ресурсами.
Тем, кто выбрал данную тему, надо обязательно посмотреть список спецкурсов (и основных курсов) кафедры ММП, и послушать всё наиболее близкое к DNN.
Задача на курсовую работу 2020/2021 года: Экспериментальный стенд для adversarial атак на нейросетевые классификаторы
Поисследовать свежие работы по adversarial example attack на DNN (deep neural networks), в первую очередь с конференций USENIX Security, IEEE Security & Privacy, на основе готовых примеров из работ сделать модельное приложение с классификатором (классификация изображений или распознавание голоса в текст или что-то третье) и работающие примеры adversarial атак на это приложение.
Материалы для чтения
Статьи:
- Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries https://www.usenix.org/conference/usenixsecurity20/presentation/suya
- Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects https://arxiv.org/abs/1811.11553
- https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
- Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks https://arxiv.org/abs/1803.00401
- Robust Physical-World Attacks on Deep Learning Models https://arxiv.org/abs/1707.08945
- Audio Adversarial Examples: Targeted Attacks on Speech-to-Text https://arxiv.org/abs/1801.01944
Смотреть дополнительно: https://paperswithcode.com/task/adversarial-attack
Код: